The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats
نویسندگان
چکیده
After spinal cord injury (SCI), secondary damage caused by oxidative stress, inflammation, and ischemia leads to neurological deterioration. In recent years, therapeutic approaches to trauma have focused on modulating this secondary cascade. There is increasing evidence that the success of cell-based SCI therapy is due mainly to secreted factors rather than to cell implantation per se. This study investigated peripheral blood mononuclear cells as a source of factors for secretome- (MNC-secretome-) based therapy. Specifically, we investigated whether MNC-secretome had therapeutic effects in a rat SCI contusion model and its possible underlying mechanisms. Rats treated with MNC-secretome showed substantially improved functional recovery, attenuated cavity formation, and reduced acute axonal injury compared to control animals. Histological evaluation revealed higher vascular density in the spinal cords of treated animals. Immunohistochemistry showed that MNC-secretome treatment increased the recruitment of CD68(+) cells with concomitant reduction of oxidative stress as reflected by lower expression of inducible nitric oxide synthase. Notably, MNC-secretome showed angiogenic properties ex vivo in aortic rings and spinal cord tissue, and experiments showed that the angiogenic potential of MNC-secretome may be regulated by CXCL-1 upregulation in vivo. Moreover, systemic application of MNC-secretome activated the ERK1/2 pathway in the spinal cord. Taken together, these results indicate that factors in MNC-secretome can mitigate the pathophysiological processes of secondary damage after SCI and improve functional outcomes in rats.
منابع مشابه
Effect of Oleuropein on Tissue Myeloperoxidase Activity in Experimental Spinal Cord Trauma
Background: Neutrophil infiltration plays an important role in inflammatory reactions following spinal cord injury (SCI) and these cells cause substantial secondary tissue damage. The purpose of this study was to determine the effect of oleuropein (OE) on myeloperoxidase (MPO) activity as an index of neutrophil infiltration. Methods: Rats were randomly divided into four groups of 7 rats each as...
متن کاملP169: The Role of Lymphocytes in Spinal Cord Injury and Pain; T Helper Cells (TH1 and TH2 Cells)
Lymphocyte is one of the subtypes of white blood cell (WBC) in immune system. Lymphocytes contain T cells, natural killer cells , and B cells. They are the head type of cell found in lymph, which for this reason the name "lymphocyte". Lymphocytes can be recognized by their large nucleus. Infiltration of immune cells in the central nervous system (CNS) helps the start of chronic pain. ...
متن کاملAnti-Inflammatory Effect of the Epigallocatechin Gallate Following Spinal Cord Trauma in Rat
Background: Spinal cord injury (SCI) stimulates an inflammatory reaction that causes substantial secondary damage inside the injured spinal tissue. The purpose of this study was to determine the anti-inflammatory effects of epigallocatechin gallate (EGCG) on traumatized spinal cord. Methods: Rats were randomly divided into four groups of 12 rats each as follow: sham-operated group, trauma group...
متن کاملCellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury
Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...
متن کاملThe Potential Role of Glycogen Synthase Kinase-3β in Neuropathy-Induced Apoptosis in Spinal Cord
Introduction: Glycogen Synthase Kinase-3β (GSK-3β) participates in several signaling pathways and plays a crucial role in neurodegenerative diseases, inflammation, and neuropathic pain. The ratio of phosphorylated GSK-3β over total GSK-3β (p-GSK-3β/t-GSK-3β) is reduced following nerve injury. Apoptosis is a hallmark of many neuronal dysfunctions in the context of neuropathic pain. Thus, this st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Neurology
دوره 267 شماره
صفحات -
تاریخ انتشار 2015